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The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. 

Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological 
research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral 
flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are 
aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a 
neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma 
probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. 
Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several 
Czech and Slovak professional actors. 
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1.  INTRODUCTION 

MOTIONAL speech is characterized by prosodic features 
(F0, energy, duration) and several voice quality features 
(e.g. jitter, shimmer, glottal-to-noise excitation ratio, 

Hammarberg index) [1], [2]. The voice quality parameter 
“jitter” describes pitch perturbations in the context of vocal 
expression. There exist different approaches to define vocal 
jitter: the majority of authors use definitions resulting from 
perturbation in pitch period [1], [3]-[6], some authors define 
jitter as pitch frequency perturbation [7], [8]. According to [9] 
jitter is difficult to manipulate for actors and there is only 
tendency for anger portrayals to show more jitter than sadness 
portrayals. On the other hand, in [10] an example is reported 
that a speaker may increase jitter for “happiness” rather than 
increasing the overall pitch level. For these perturbations also 
the term “microintonation” is used [9]. We analyze 
microintonation of male and female emotional speech 
representing joy, sadness, anger, and a neutral state. Obtained 
results of spectral analysis can also be used to synthesize FIR 
digital filter for suppression of the microintonation component 
of a speech signal prior to decomposition of its virtual melody 
contour into the sentence melody and the word melody. This 
prosodic parameter can be applied to the text-to-speech (TTS) 
system enabling expressive speech production, or it can be 
used in emotional speech transformation (conversion) method 
based on cepstral speech description [11]. 

Different types of emotions are manifested also in the spectral 
domain [12]. Speech spectrum is represented very well by a 
pole/zero model using cepstral coefficients in comparison with 
linear predictive coding (LPC) corresponding only to an all-
pole approximation of the vocal tract. For this reason, we also 
perform statistical analysis of the cepstral coefficients and 
spectral flatness values (in voiced speech only) for the 
mentioned emotional states. There is a necessity for adaptation 
of the speech synthesizer based on cepstral speech model. The 
kernel of the cepstral synthesizer represented by  

 
 
the source-filter model based on Padé approximation of a 
human vocal tract was designed and optimized on the basis of 
the processed cepstral coefficient properties [13]. The 
parameters used in the original realization of the cepstral 
speech synthesizer had been obtained by statistical evaluation 
of a speech signal in the database of phones uttered by a male 
speaker in a neutral speech style. Therefore we decided to 
carry out basic statistical analysis of values and ranges of 
cepstral coefficients obtained from speech signals expressing 
different emotional states. As regards spectral flatness, it is a 
useful measure to distinguish between voiced and unvoiced 
speech [14]. Its usage in speech processing can be extended to 
whispered speech recognition in noisy environment [15], or 
voicing transition frequency determination in harmonic speech 
modelling [16]. In cepstral speech synthesis the spectral 
flatness measure was used to determine voiced / unvoiced 
energy ratio in voiced speech. According to psychological 
research of emotional speech different emotions are 
accompanied by different spectral noise [17]. We control its 
amount by spectral flatness measure according to which the 
high frequency noise is mixed in voiced frames during cepstral 
speech synthesis. 

2.  SUBJECT & METHODS 

2.1   Microintonation analysis 
Microintonation, together with sentence melody and word 

melody, represents melody of speech given by a fundamental 
frequency (F0) contour. Microintonation component of speech 
melody can be supposed to be a random, band-pass signal 
described by its spectrum and statistical parameters. Fig. 1 
shows the block diagram of our speech processing method of 
microintonation analysis. 
Speech frames classified as voiced are analyzed separately 
depending on the emotional state (joyous, sad, angry, and 
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neutral) and the voice type (male, female). Joy, sadness and 
anger are chosen as three representatives of emotional states as 
according to [18] they correspond to grouping of emotions 
according to similarity: 
1. anger, rage, disgust, unwillingness; 
2. joy, gratitude, happiness, pleasantness, elation; 
3. sadness, disconsolation, loneliness, anxiety. 

The whole microintonation analysis procedure is divided into 
four phases: 
1. Determination of F0 values, definition of the voiced and 

unvoiced parts of the processed speech signal. 
2. F0 contour analysis, microintonation extraction, 

calculation of zero crossing parameters in the voiced parts 
of the speech signal. 

3. Microintonation and zero crossing statistical analysis of 
the concatenated signal. 

4. Microintonation signal spectral analysis and 3-dB 
bandwidth (B3) determination from the concatenated 
signal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1   Block diagram of microintonation statistical and spectral 

parameter estimation. 
 
The introductory microintonation processing phase consists of 
the following steps: 
− Determination of the melody contours from the voiced 

parts of speech smoothed by a median filter. 
− Determination of F0mean values and calculation of the 

sentence melody declination of the F0 contour given by 
the linear trend (LT) 

( ) , , nbabaLT +=  (1) 

where FNn ,...2,1=  and NF is number of frames of the F0 
contour.  The best linear fit to a  given set of  F0  values is 

solved by least squares fitting technique of linear regression 
yielding 
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− Calculation of differential microintonation signal F0DIFF 
by subtraction of these values from the corresponding F0 
contours (F0mean and LT removal) 

( ) ( )( ) ( ) .000 nLTFnFnF MeanDIFF −−=  (3) 

− Detection of zero crossings, calculation of zero crossing 
periods LZ. 

Demonstration example of microintonation analysis 
processing phases is shown in Fig.4. 
Basic statistical analysis phase is performed in two steps: 
− Statistical analysis of microintonation signal: minimum, 

maximum, and standard deviation (mean value of 
microintonation signal approaches to zero). For both 
positive and negative microintonation values the mean 
parameters are determined (see Fig.2). 

− Statistical analysis of the zero crossing periods: the 
minimum, maximum, mean values, standard deviation 
and relative value, defined as LZrel = NF /NZ where NZ is 
the total number of zero crossings for one speaker. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2   Block diagrams of microintonation basic and zero crossing 
statistical analysis. 

Spectral analysis of the concatenated differential 
microintonation signal is also carried out for all emotions. 
This analysis phase is divided into three steps (see Fig.3): 
− Calculation of the frequency parameters  

( )ZxFZx LfF  2=  from the zero crossing periods 
LZx = {LZmin, LZmax, LZmean, LZstd, LZrel}, where fF is the 
frame sampling frequency. 

− Microintonation signal spectral analysis by periodogram 
averaging using the Welch method [19]. 

− Determination of B3 values from these spectra for each of 
the emotional types. 
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To obtain the spectrum of the smoothed microintonation 
signal (see Fig.5b), the concatenated differential F0 signal is 
filtered by a moving average (MA) filter of the length MF 
(Voiced parts shorter than MF+2 frames are not processed in 
further analysis). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3   Block diagrams of microintonation signal spectral analysis. 

 
 
 
 
 
 
a) b) 
 
 
 
 
 
 
 
c) d) 

Fig.4   Demonstration of microintonation analysis: speech signal with 
F0 contour (a), the second voiced part: original F0, mean F0, and 
linear trend (b), differential signal after F0mean and LT subtraction (c), 
zero crossing of differential F0 signal (d) – the sentence “Prosím, 
nehnevajte sa” (“Please, don’t be angry”) uttered in sad emotional 
style by a male Slovak speaker. 

 
 
 
 
 
 
 

Fig.5 Microintonation smoothing and spectrum determination 
(obtained from the same sentence’s second voiced part as in Fig.4): 
basic differential F0 signal and the one filtered by moving average 
(left), corresponding spectra and their 3-dB bandwidths B3 (right). 

2.2  Cepstral coefficient analysis 
Cepstral speech analysis is performed in the frequency 

domain as follows: From the input samples of the speech 
signal (after segmentation and weighting by a Hamming 
window) the complex spectrum by the Fast Fourier 
Transformation (FFT) algorithm is calculated. In the next step 
the powered spectrum is computed and the natural logarithm is 
applied – see the block diagram in Fig. 6. Second application 
of the FFT algorithm gives the symmetric real cepstrum 

{ } { }112/2/10 ,...,|,...,, cccccc
FFTFFT NNn −=  (4) 

By limitation to the first N0+1 coefficients, the Z-transform of 
the real cepstrum in the form 

( ) 0

0
...2

2
1

10
N

N zczczcczC −−− ++++=  (5) 

can be obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6   Cepstral speech analysis method. 

Cepstral speech synthesis is performed by a digital filter 
implementing approximate inverse cepstral transformation. In 
general, the system transfer function is given by an 
exponential relation 

( ) ( )G z eS z= $ , (6) 

where the exponent is the Z-transform of the truncated speech 
cepstrum 
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where { }nŝ  represents the minimum phase approximation of 
the real cepstrum 

.12,0ˆ

,21,2ˆ

,2 ,0,ˆ

00

0

0

−≤<=

<≤=

==

NnNs

Nncs

Nncs

n

nn

nn
 (8) 

The system transfer function of the synthesis filter is defined 
as 
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and can be performed by a cascade connection of N0 
elementary filter structures. Using the Padé approximation of 
the exponential function it has been found out, that the 
minimum number of N0 (25/50 at 8/16 kHz sampling 
frequency) cepstral coefficients is necessary for sufficient 
approximation [13]. The cepstral synthesis block structure is 
given by a cascade of digital filters (of the 1st, 2nd or 3rd order 
in the second canonic form) that perform the inverse 
transformation of N0 cepstral components – see Fig.7. 

 
 
 
 
 
 

 

 

Fig.7   Cascade realization of Padé approximation filter. 
 
Cepstral coefficient analysis must be preceded by 
classification and sorting process of the cepstral coefficients in 
dependence on voice type (male / female) and speech style 
(neutral / emotional). The performed statistical analysis of 
cepstral coefficients consists of three parts: 
1. determination of basic statistical parameters of the 

cepstral coefficients (minimum, maximum, mean value, 
and standard deviation), 

2. calculation and building of histograms, 
3. calculation of extended statistical parameters from 

histograms (kurtosis and skewness). 
 

Realization of statistical analysis of the cepstral coefficient 
properties was processed in the following phases: manual 
(subjective) classification of voice type and emotional speech 
style, further automatic processing – cepstral analysis of 
speech signal, computation of the basic statistical parameters 
of determined cepstral coefficients, comparison of cepstral 
coefficient mean values and ranges for emotional and neutral 
states. As the graphical output, the histogram of cepstral 
coefficients for every emotional state is also constructed. 
Extended statistical parameters are subsequently calculated 
from these histograms. The skewness y and kurtosis k of a 
distribution is defined as 
 

  (10) 

where µ is the mean of x, σ is the standard deviation of x, and 
E(t) represents the expected value of the quantity t. Skewness 
is a measure of asymmetry of the data around the sample 
mean. If skewness is negative, the data are spread out more to 
the left of the mean than to the right. If skewness is positive, 
the data are spread out more to the right. Kurtosis is a measure 
of how outlier-prone a distribution is. The kurtosis of the 
normal distribution is 3. Distributions that are more outlier-
prone than the normal distribution have kurtosis greater than 
3; distributions that are less outlier-prone have kurtosis less 
than 3. 

2.3   Spectral flatness analysis 
The spectral flatness measure SF calculated during the 

cepstral speech analysis (see Fig. 6) is defined as 
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where the values 2
kS  represent the magnitude of the 

complex spectrum, and NFFT is the number of points of the fast 
Fourier transform (FFT). The SF values lie generally in the 
range of (0 ÷ 1) − the zero value represents totally voiced 
signal (for example pure sinusoidal signal); in the case of 
SF = 1, the totally unvoiced signal is classified (for example 
white noise signal). According to the statistical analysis of the 
Czech and Slovak words the ranges of SF = (0 ÷ 0.25) for 
voiced speech frames and SF = (0 ÷ 0.75) for unvoiced frames 
were evaluated. 

For voiceness frame classification, the value of detected pitch-
period L was used. If the value L ≠ 0, the processed speech 
frame is determined as voiced, in the case of L = 0 the frame is 
marked as unvoiced. On the border between voiced and 
unvoiced part of speech signal a situation can occur that the 
frame is classified as voiced, but the SF value corresponds to 
the unvoiced class. For correction of this effect, the output 
values of the pitch-period detector are filtered by a 3-point 
recursive median filter. 

The performed statistical analysis of spectral flatness values 
consists of two parts: 
1. determination of basic statistical parameters of the 

SF values, 
2. calculation and building of histograms. 
Practical evaluation of obtained results is further processed in 
three ways: 
− determination of mean ratio between neutral and 

emotional states, 
− visual comparison of histogram figures, 
− histogram fitting and modelling by Gamma distribution – 

comparison of parameters α, λ and root mean square 
(RMS) approximation error. 

We compute the SF values of the sentences in the basic 
(“Neutral”) speech style and the SF values of the sentences 
pronounced in the emotional states (“Joy”, “Sadness”, and 
“Anger”) and perform statistical analysis of these values. In 
our algorithm, the SF values obtained from the speech frames 
classified as voiced are separately processed in dependence on 
voice type (male/female). For every voice type the SF values 
are subsequently sorted by emotional styles and stored in 
separate stacks. These classification operations are performed 
manually, by subjective listening method. Next operations 
with the stacks were performed automatically – calculation of 
statistical parameters: minimum, maximum, mean values and 
standard deviation (STD). From the mean SF values the ratio 
between emotional and neutral states is subsequently 
calculated. As the graphical output used for visual comparison 
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(subjective method), the histogram of sorted SF values for each 
of the stacks is also calculated. These histograms can also be 
fitted and modelled by the Gamma distribution (objective 
evaluation method). 

The generalized Gamma distribution of the random variable X 
is given by the probability density function (PDF) [20] 

( ) ( ) ,0,0,01 >>≥
Γ

= −− λα
α
λ λα xexxf x

a
 (11)

where α is a shape parameter and λ is a scale parameter. The 
Gamma function is defined by 

( ) .1

0
dxex x−−∞

∫=Γ αα  (12) 

The graphs of the PDFs for different parameters α, λ are 
shown in Fig.8. 
 
 
 
 
 
 
 
 
 

Fig.8   Example of the Gamma probability density functions for 
λ = 0.5 (left), λ = 1.5 (right). 

The shape and scale parameters of the Gamma distribution 
enable easy and rather accurate modelling of obtained 
histograms of SF values. It means the finding of  α  and  λ  
parameters for minimum RMS error between the histogram 
envelope curve and the Gamma PDF. Simultaneous control of 
two parameters represents a two- dimensional regulation 
process. Its practical realization with sufficient precision is a 
difficult task. Therefore, a simplified control method was used 
– only one parameter is changed and the second one has a 
constant value. The developed algorithm can be divided into 
three phases: 
1. Initialization phase: 

− fitting the histogram bars by the envelope curve 
− rough estimation of α, λ parameters 
− calculation of the Gamma PDF 
− calculation of the RMS error, storing this value to the 

memory. 
2. Finding the RMS minimum by change of α parameter: 

− modification of α parameter with constant value of λ 
parameter (estimated in phase 1) 

− calculation of the Gamma PDF and the RMS error, 
storing to the memory 

− comparison of the current RMS error with the last 
value from the memory 

(repeating the steps in this phase until the minimum of RMS). 
3. Finding the RMS minimum by change of λ parameter: 

− modification of λ parameter with constant value of α 
parameter (determined in phase 2) 

− calculation of the Gamma PDF and the RMS error, 
storing to the memory 

− comparison of the current RMS error with the last 
value from the memory 

(repeating the steps in this phase until the minimum of RMS). 

3.  MATERIAL, EXPERIMENTS, AND RESULTS 
The speech material was collected in two databases 

(separately from male – 134 sentences, and female voice – 132 
sentences, 8+8 speakers altogether) consisting of sentences 
with duration from 0.5 to 5.5 seconds, resampled at 16 kHz. 
The sentences of four emotional states (sad, joyful, angry, and 
neutral for comparison) were obtained from multimedia CDs 
containing recordings of stories in Czech and Slovak 
languages uttered by professional actors. 

Classification of emotional states was carried out manually, by 
subjective listening method. The frame length depends on the 
mean pitch period of the processed signal. In our experiment, 
we had chosen 24-ms frames for male voice, and 20-ms 
frames for female voice. It corresponds to the frame frequency 
fF = 83.3 Hz for males, and fF = 125 Hz for females when the 
sampling frequency fs = 16 kHz is used. Pitch contours were 
given with the help of the PRAAT program [21]. The PRAAT 
internal settings for F0 value determination were 
experimentally chosen by visual comparison of testing 
sentences (one typical sentence from each of emotions and 
voice classes) as follows: cross-correlation analysis method 
[22], pitch-range 35÷250 Hz for male and 105÷350 Hz for 
female voices. 

In the case of microintonation analysis, the minimum length of 
the processed voiced parts was experimentally set to 10 frames 
and the corresponding filter length of MF = 8 was chosen. 
Number of analyzed voiced parts / voiced frames was: 
 neutral: 112/2698, joy: 79/1927, sadness: 128/3642, 

anger: 104/ 2391 – Male. 
 neutral: 86/2333, joy: 87/2541, sadness: 92/2203, anger: 

91/2349 – Female. 
As follows from the experiments, the cepstral coefficients, as 
well as the spectral flatness values, depend on a speaker, but 
they do not depend on nationality (it was confirmed, that it 
holds for the Czech and Slovak languages). Therefore, the 
created speech database consists of neutral and emotional 
sentences uttered by several speakers (extracted from the 
Czech and Slovak stories performed by professional actors). 

The described method of cepstral speech analysis was 
supplied with determination of the fundamental frequency F0 
and energy En contours (calculated from the first cepstral 
coefficient c0). After removal of the low energy starting and 
ending frames by the energy threshold (Enmin) the limited 
working length in frames for next processing was obtained – 
see demonstration example in Fig.9. 

Cepstral analysis of the speech signal was performed for 
total number of 25988 frames (8 male speakers) and 24017 
frames (8 female speakers): 
 6031 frames (neutral), 4128 frames (joy), 7085 frames 

(sadness), 5648 frames (anger) – Male. 
 4472 frames (neutral), 5333 frames (Joy), 5753 frames 

(sadness), 5601 frames (anger) – Female. 
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As the value range of the cepstral coefficients exponentially 
falls, analysis only of the first 16 coefficients is performed (the 
remaining coefficients practically have no influence on the 
filter stability, structure, and implementation). The spectral 
flatness values were determined only from the voiced frames 
(totally 11639 of male and 13464 of female voice). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9   Processed sentence “Dcera královská” (King’s daughter), 
Czech male speaker, fs = 16 kHz: speech signal with F0 contour (top), 
En contour (bottom). 

3.1  Results of microintonation analysis 
Results of basic statistical microintonation analysis for all 

four emotional states are summarized in Tab.1 (male voice) 
and Tab.2 (female voice). Results of performed zero crossing 
analysis for male / female voices are shown in Tab.3 / Tab.4. 
Zero crossing periods were used to calculate microintonation 
signal spectral analysis. Summary results including the 3-dB 
bandwidth values are shown in Tab.5 for male voice, and in 
Tab.6 for female voice. The average microintonation spectra 
(with and without smoothing by moving average) can be seen 
in Fig.10 (male voice), and Fig.11 (female voice). 

 

Table 1.  Summary results of microintonation basic statistical 
analysis (differential F0 parameters in [Hz]) – male voice. 

Emotion F0DIFFmin F0DIFFmax F0DIFFmean F0DIFFstd
Neutral -16.75 22.71 2.66 3.92 
Joy -32.68 34.48 7.27 9.71 
Sadness -34.13 25.27 4.02 5.57 
Anger -56.32 63.88 9.62 14.23 

 
 
Table 2.  Summary results of microintonation basic statistical 
analysis – female voice. 

Emotion F0DIFFmin F0DIFFmax F0DIFFmean F0DIFFstd 
Neutral -23.49 23.98 3.67 6.06 
Joy -32.88 33.02 8.49 10.72 
Sadness -30.28 34.56 6.29 8.43 
Anger -44.35 42.95 10.16 13.07 

 

Table 3.  Summary results of zero crossing analysis (zero crossing 
period LZ parameters in [frames]) – male voice. 

Emotion NZ LZmax
*) LZmean LZstd 

Neutral 592 26 6.04 4.19 
Joy 403 59 8.26 6.52 
Sadness 681 57 6.82 5.69 
Anger 521 23 6.74 4.57 

*)  LZmin = 1  

Table 4.  Summary results of zero crossing analysis – female voice. 

Emotion NZ LZmax
*) LZmean LZstd 

Neutral 546 28 5.26 3.78 
Joy 468 40 6.64 5.23 
Sadness 524 40 6.69 5.43 
Anger 478 30 6.32 4.43 

*)  LZmin = 1  

Table 5.  Summary results of spectral analysis (frequency parameters 
in [Hz] derived from concatenated differential F0 signal) – male 
voice. 

Emotion FZmean FZrel B3 B3F
*) 

Neutral 6.89 8.83 6.75 4.56 
Joy 5.04 6.45 4.56 3.82 
Sadness 6.11 7.78 4.39 2.69 
Anger 6.18 8.00 5.37 4.07 

*) 3-dB bandwidth for signal smoothed by MA filter with MF = 8 

 

Table 6.  Summary results of spectral analysis – female voice. 

Emotion FZmean FZrel B3 B3F
*) 

Neutral 11.88 14.60 11.59 6.71 
Joy 9.41 11.94 9.03 5.61 
Sadness 9.33 11.66 7.20 3.17 
Anger 9.88 12.59 10.74 5.86 

*) 3-dB bandwidth for signal smoothed by MA filter with MF = 8 
 
 

 
 
 
 
 
 

a) b) 

 
 
 
 
 

c) d) 
 

Fig.10   Spectra of microintonation used for 3-dB bandwidth 
determination for emotions (with and without smoothing by moving 
average): “neutral” (a), “sadness” (b), “joy” (c), and “anger” (d) - 
male voice,  fF = 83.3 Hz. 
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a) b) 
 
 
 
 
 
 
 
 
c) d) 

Fig.11   Spectra of microintonation used for 3-dB bandwidth 
determination for emotions (with and without smoothing by moving 
average): “neutral” (a), “sadness” (b), “joy” (c), and “anger” (d) - 
female voice,  fF = 125 Hz. 
 
3.2  Results of cepstral coefficient analysis 

Results of determined mean values of the first six cepstral 
coefficients are shown in Table 7 (male voice) and Table 8 
(female voice). Summary histograms of cepstral coefficients 
(c1-c8) can be seen in Fig.12 and histogram contour 
comparison for different emotions of cepstral coefficients   
(c1-c4) is shown in Fig.13 (both male voice). Table 9 contains 
values of kurtosis parameters, and Table 10 contains values of 
skewness obtained from the compared histograms of c1-c6 
(both male voice). In contrast to kurtosis definitions in (10) we 
subtract 3 from the computed value, so that the normal 
distribution has kurtosis of zero. 

Table 7. Mean values of cepstral coefficients c1-c6, male voice. 

Emotion c1 mean c2 mean c3 mean c4 mean c5 mean c6 mean
Neutral -0.079 0.024 0.082 0.132 0.179 0.237 
Joy -0.165 -0.053  0.014 0.073 0.131 0.196 
Sadness -0.110 -0.015  0.047 0.098 0.151 0.215 
Anger -0.215 -0.088 -0.019 0.040 0.095 0.156 

Table 8. Mean values of cepstral coefficients c1-c6, female voice. 

Emotion c1 mean c2 mean c3 mean c4 mean c5 mean c6 mean
Neutral -0.079  0.002  0.051 0.102 0.160 0.224 
Joy -0.127 -0.036  0.019 0.068 0.124 0.188 
Sadness -0.175 -0.079 -0.021 0.028 0.078 0.139 
Anger -0.174 -0.083 -0.025 0.028 0.081 0.144 

Table 9. Kurtosis parameters determined from histograms of c1-c6 
cepstral coefficients, male voice. 

Emotion c1  c2  c3  c4  c5  c6  
Neutral 3.93 1.36 1.17  0.65  0.58  0.29 
Joy 2.53 0.91 0.31  0.01 -0.35 -0.19 
Sadness 1.72 0.82 0.29 -0.06 -0.16 -0.18 
Anger 1.12 0.01 0.11  0.04 -0.07 -0.08 

 

 

 

Table 10. Skewness parameters determined from histograms of 
c1-c6 cepstral coefficients, male voice. 

Emotion c1  c2  c3  c4  c5  c6  
Neutral -1.79 -0.99 -0.93 -0.73 -0.56 -0.39 
Joy -1.20 -0.64 -0.42 -0.22 -0.03  0.16 
Sadness -1.03 -0.75 -0.46 -0.13 -0.07  0.04 
Anger -0.84 -0.36 -0.12  0.09  0.25  0.35 

 
 
 
 
 
 
 
 
 
 
a) b) 
 
 
 
 
 
 
 
 
c) d) 

Fig.12   Histograms of the first 8 cepstral coefficients for different 
speech styles (male voice): neutral speech (a), joy (b), sadness (c), 
and anger (d). 
 
 
 
 
 
 
 
 
 
a) b) 
 
 
 
 
 
 
 
c) d) 

Fig.13   Histogram comparison for different speech styles (male 
voice): for cepstral coefficients c1 (a), coefficients c2 (b), coefficients 
c3 (c), and coefficients c4 (d). 
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3.3  Results of cepstral coefficient analysis 
Summary results of statistical analysis of the spectral 

flatness values are shown in Tab.11 (male), Tab.12 (female). 
The main result – mean spectral flatness value ratios between 
different emotional states and a neutral state – is given in 
Tab.13. Summary histograms of SF values for different 
emotions in dependence on the speaker’s gender are shown in 
Fig.14 (male) and Fig.15 (female). Tab.14 (male) and Tab.15 
(female) contain parameters α, λ of the Gamma distribution for 
histogram fitting and modelling together with the resulting 
RMS approximation errors. 

Table 11. Summary results of statistical analysis of the spectral 
flatness values: male voice, voiced frames. 

Emotion frames mean min max std 
Neutral 3300 0.00286 3.78⋅10-5 0.03215 0.00364 
Joy 2183 0.00662 1.36⋅10-4 0.04327 0.00650 
Sadness 3503 0.00444 1.12⋅10-4 0.05540 0.00462 
Anger 2707 0.00758 2.28⋅10-4 0.04228 0.00614 

Table 12. Summary results of statistical analysis of the spectral 
flatness values: female voice, voiced frames. 

Emotion frames mean min max std 
Neutral 3056 0.00274 3.15⋅10-5 0.03731 0.00346 
Joy 3473 0.00784 2.07⋅10-4 0.05414 0.00726 
Sadness 3690 0.00506 9.48⋅10-5 0.06694 0.00674 
Anger 3245 0.00807 1.41⋅10-4 0.05129 0.00692 

Table 13. Mean spectral flatness value ratios between different 
emotional states and a neutral state (for voiced frames only). 

mean SF ratio joy:neutral sadness:neutral anger:neutral 
Male voice 2.31 1.55 2.65 
Female voice 2.86 1.85 2.94 
Female to Male 
ratio 1.24 1.19 1.11 

Table 14. Evaluated parameters α, λ of Gamma distribution for 
histogram fitting and modelling together with resulting RMS error: 
male voice, voiced frames. 

Emotion α *) λ *) RMS 
Neutral 2.05 0.48 0.70 
Joy 4.15 0.50 0.67 
Sadness 2.55 0.54 1.35 
Anger 5.40 0.56 0.84 

*) Values for minimum RMS error 

Table 15. Evaluated parameters α, λ of Gamma distribution for 
histogram fitting and modelling together with resulting RMS error: 
female voice, voiced frames. 

Emotion α *) λ *) RMS 
Neutral 1.95 0.51 1.48 
Joy 4.85 0.51 0.54 
Sadness 2.35 0.54 0.75 
Anger 6.15 0.51 0.67 

*) Values for minimum RMS error 

 
 
 
 
 
 

 
a) b) 
 
 
 
 
 
 
 
 
 
c) d) 

Fig.14   Histograms of spectral flatness values together with fitted 
and modelled curves of Gamma distribution - determined from the 
speech signal with emotions: “neutral” (a), “sadness” (b), “joy” (c), 
and “anger” (d) - male voice, voiced frames. 
 
 
 
 
 
 

 
a) b) 
 
 
 
 
 
 
 
 
 

c) d) 

Fig.15   Histograms of spectral flatness values together with fitted 
and modelled curves of Gamma distribution - determined from the 
speech signal with emotions: “neutral” (a), “sadness” (b), “joy” (c), 
and “anger” (d) - female voice, voiced frames. 

4.  CONCLUSION 
Statistical and spectral analysis of microintonation signal 

component of speech melody for several speakers and four 
emotional states (joy, sadness, anger, neutral state) was 
performed. Summary results of basic statistical 
microintonation analysis stored in Tab.1 and Tab.2 show good 
correlation for both types of voices and all three emotions 
compared with a neutral state. The same tendency can be 
observed also for statistical results of zero crossing analysis 
(see Tab.3 and Tab.4). Comparing visually the average 
spectra, we can see that similar curves can be matched in 
Fig.10 and Fig.11 for male and female voice for all 
corresponding emotions in spite of the fact that different frame 
lengths were used in microintonation frequency analysis for 
male and female voices. 
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Statistical analysis of cepstral coefficients has shown that 
different emotional states are manifested in a speech signal in 
observed parameters of cepstral coefficients, histogram 
envelopes and together with other parameters, they may well 
be used for identification of individual emotions. The values 
given by numerical evaluation of obtained statistical 
parameters will be used for modification of the cepstral 
synthesizer digital approximation filter structure, including 
possible implementation in the Czech and Slovak TTS system 
based on cepstral description of speech inventory enabling 
expression of basic emotional speech styles. Results of the 
cepstral coefficient ranges and values statistical analysis are 
shown also in the form of histograms in a similar way as the 
spectral flatness ranges and values. This method can also be 
used for evaluation of emotional synthetic speech as a 
supplementary approach parallel to the listening tests [23]. 

Results of the spectral flatness ranges and values statistical 
analysis show good correlation for both types of voices and all 
three emotions. The greatest mean SF value is observed in 
“Anger” style for both voices – compare Tab.11 and Tab.12. 
From Tab.13 follows that the ratio of mean values is 1.18 
times higher for female voice than for male voice. Similar 
shape of SF histograms can be seen in Fig.14 and Fig.15 
comparing corresponding emotions for male and female 
voices. This subjective result is confirmed by the objective 
method – histogram modelling with the help of Gamma 
distribution. Given values of α and λ parameters – showed in 
Tab.14 and Tab.15 – are also in correlation with previous 
results. Our final aim was to obtain the ratio of mean values 
(see Tab.13), which can be used to control the high frequency 
noise component in the mixed excitation during cepstral 
speech synthesis of voiced frames. This parameter can be also 
applied for modification of degree of voicing in voiced frames 
[16]. 
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